博客
关于我
LeetCode.581 Shortest Unsorted Continuous Subarray
阅读量:806 次
发布时间:2019-03-17

本文共 2372 字,大约阅读时间需要 7 分钟。

To solve this problem, we need to find the shortest continuous subarray such that sorting this subarray in ascending order would make the entire array sorted in ascending order as well.

Approach

The approach to solve this problem involves the following steps:

  • Sort the Array: First, we create a sorted version of the input array. This helps us identify the segments of the array that are out of order.

  • Identify Differences: We compare the original array with the sorted array to find the indices where they first differ (start of the unsorted segment) and where they last differ (end of the unsorted segment).

  • Determine the Subarray Length: The length of the shortest subarray that needs to be sorted is given by the range from the first differing index to the last differing index, inclusive.

  • Solution Code

    public class Solution {    public int findMinimumSubarrayLength(int[] nums) {        int n = nums.length;        int[] sorted = Arrays.copyOf(nums, n);        Arrays.sort(sorted);                int start = 0;        while (start < n && sorted[start] == nums[start]) {            start++;        }                if (start >= n) {            return 0;        }                int end = n - 1;        while (end >= 0 && sorted[end] == nums[end]) {            end--;        }                return end - start + 1;    }}

    Explanation

  • Sorting the Array: We create a sorted version of the input array to compare against the original array and identify the unsorted segments.

  • Finding the Start of the Subarray: By iterating through the original array, we find the first index where the value does not match the corresponding value in the sorted array. This index marks the beginning of the segment that needs to be sorted.

  • Finding the End of the Subarray: Similarly, by iterating from the end of the array, we find the last index where the value does not match the corresponding value in the sorted array. This index marks the end of the segment that needs to be sorted.

  • Calculating the Length: The length of the subarray is calculated as the difference between the end and start indices, plus one.

  • This approach ensures that we efficiently find the shortest subarray that, when sorted, will result in the entire array being sorted. The time complexity is dominated by the sorting step, making it (O(n \log n)), which is efficient for large arrays up to 10,000 elements.

    转载地址:http://ekjez.baihongyu.com/

    你可能感兴趣的文章
    MySQL万字总结!超详细!
    查看>>
    Mysql下载以及安装(新手入门,超详细)
    查看>>
    MySQL不会性能调优?看看这份清华架构师编写的MySQL性能优化手册吧
    查看>>
    MySQL不同字符集及排序规则详解:业务场景下的最佳选
    查看>>
    Mysql不同官方版本对比
    查看>>
    MySQL与Informix数据库中的同义表创建:深入解析与比较
    查看>>
    mysql与mem_细说 MySQL 之 MEM_ROOT
    查看>>
    MySQL与Oracle的数据迁移注意事项,另附转换工具链接
    查看>>
    mysql丢失更新问题
    查看>>
    MySQL两千万数据优化&迁移
    查看>>
    MySql中 delimiter 详解
    查看>>
    MYSQL中 find_in_set() 函数用法详解
    查看>>
    MySQL中auto_increment有什么作用?(IT枫斗者)
    查看>>
    MySQL中B+Tree索引原理
    查看>>
    mysql中cast() 和convert()的用法讲解
    查看>>
    mysql中datetime与timestamp类型有什么区别
    查看>>
    MySQL中DQL语言的执行顺序
    查看>>
    mysql中floor函数的作用是什么?
    查看>>
    MySQL中group by 与 order by 一起使用排序问题
    查看>>
    mysql中having的用法
    查看>>