博客
关于我
LeetCode.581 Shortest Unsorted Continuous Subarray
阅读量:806 次
发布时间:2019-03-17

本文共 2372 字,大约阅读时间需要 7 分钟。

To solve this problem, we need to find the shortest continuous subarray such that sorting this subarray in ascending order would make the entire array sorted in ascending order as well.

Approach

The approach to solve this problem involves the following steps:

  • Sort the Array: First, we create a sorted version of the input array. This helps us identify the segments of the array that are out of order.

  • Identify Differences: We compare the original array with the sorted array to find the indices where they first differ (start of the unsorted segment) and where they last differ (end of the unsorted segment).

  • Determine the Subarray Length: The length of the shortest subarray that needs to be sorted is given by the range from the first differing index to the last differing index, inclusive.

  • Solution Code

    public class Solution {    public int findMinimumSubarrayLength(int[] nums) {        int n = nums.length;        int[] sorted = Arrays.copyOf(nums, n);        Arrays.sort(sorted);                int start = 0;        while (start < n && sorted[start] == nums[start]) {            start++;        }                if (start >= n) {            return 0;        }                int end = n - 1;        while (end >= 0 && sorted[end] == nums[end]) {            end--;        }                return end - start + 1;    }}

    Explanation

  • Sorting the Array: We create a sorted version of the input array to compare against the original array and identify the unsorted segments.

  • Finding the Start of the Subarray: By iterating through the original array, we find the first index where the value does not match the corresponding value in the sorted array. This index marks the beginning of the segment that needs to be sorted.

  • Finding the End of the Subarray: Similarly, by iterating from the end of the array, we find the last index where the value does not match the corresponding value in the sorted array. This index marks the end of the segment that needs to be sorted.

  • Calculating the Length: The length of the subarray is calculated as the difference between the end and start indices, plus one.

  • This approach ensures that we efficiently find the shortest subarray that, when sorted, will result in the entire array being sorted. The time complexity is dominated by the sorting step, making it (O(n \log n)), which is efficient for large arrays up to 10,000 elements.

    转载地址:http://ekjez.baihongyu.com/

    你可能感兴趣的文章
    mysql更新一个表里的字段等于另一个表某字段的值
    查看>>
    Mysql更新时间列只改日期为指定日期不更改时间
    查看>>
    MySQL更新锁(for update)摘要
    查看>>
    mysql更新频率_MySQL优化之如何了解SQL的执行频率
    查看>>
    mysql替换表的字段里面内容
    查看>>
    MySQL最多能有多少连接
    查看>>
    MySQL最大建议行数 2000w,靠谱吗?
    查看>>
    MySQL有哪些锁
    查看>>
    MySQL服务器安装(Linux)
    查看>>
    mysql服务器查询慢原因分析方法
    查看>>
    mysql服务无法启动的问题
    查看>>
    MySQL杂谈
    查看>>
    mysql权限
    查看>>
    mysql条件查询
    查看>>
    MySQL条件查询
    查看>>
    MySQL架构与SQL的执行流程_1
    查看>>
    MySQL架构与SQL的执行流程_2
    查看>>
    MySQL架构介绍
    查看>>
    MySQL架构优化
    查看>>
    mysql架构简介、及linux版的安装
    查看>>