博客
关于我
LeetCode.581 Shortest Unsorted Continuous Subarray
阅读量:806 次
发布时间:2019-03-17

本文共 2372 字,大约阅读时间需要 7 分钟。

To solve this problem, we need to find the shortest continuous subarray such that sorting this subarray in ascending order would make the entire array sorted in ascending order as well.

Approach

The approach to solve this problem involves the following steps:

  • Sort the Array: First, we create a sorted version of the input array. This helps us identify the segments of the array that are out of order.

  • Identify Differences: We compare the original array with the sorted array to find the indices where they first differ (start of the unsorted segment) and where they last differ (end of the unsorted segment).

  • Determine the Subarray Length: The length of the shortest subarray that needs to be sorted is given by the range from the first differing index to the last differing index, inclusive.

  • Solution Code

    public class Solution {    public int findMinimumSubarrayLength(int[] nums) {        int n = nums.length;        int[] sorted = Arrays.copyOf(nums, n);        Arrays.sort(sorted);                int start = 0;        while (start < n && sorted[start] == nums[start]) {            start++;        }                if (start >= n) {            return 0;        }                int end = n - 1;        while (end >= 0 && sorted[end] == nums[end]) {            end--;        }                return end - start + 1;    }}

    Explanation

  • Sorting the Array: We create a sorted version of the input array to compare against the original array and identify the unsorted segments.

  • Finding the Start of the Subarray: By iterating through the original array, we find the first index where the value does not match the corresponding value in the sorted array. This index marks the beginning of the segment that needs to be sorted.

  • Finding the End of the Subarray: Similarly, by iterating from the end of the array, we find the last index where the value does not match the corresponding value in the sorted array. This index marks the end of the segment that needs to be sorted.

  • Calculating the Length: The length of the subarray is calculated as the difference between the end and start indices, plus one.

  • This approach ensures that we efficiently find the shortest subarray that, when sorted, will result in the entire array being sorted. The time complexity is dominated by the sorting step, making it (O(n \log n)), which is efficient for large arrays up to 10,000 elements.

    转载地址:http://ekjez.baihongyu.com/

    你可能感兴趣的文章
    MySQL-架构篇
    查看>>
    MySQL-索引的分类(聚簇索引、二级索引、联合索引)
    查看>>
    Mysql-触发器及创建触发器失败原因
    查看>>
    MySQL-连接
    查看>>
    mysql-递归查询(二)
    查看>>
    MySQL5.1安装
    查看>>
    mysql5.5和5.6版本间的坑
    查看>>
    mysql5.5最简安装教程
    查看>>
    mysql5.6 TIME,DATETIME,TIMESTAMP
    查看>>
    mysql5.6.21重置数据库的root密码
    查看>>
    Mysql5.6主从复制-基于binlog
    查看>>
    MySQL5.6忘记root密码(win平台)
    查看>>
    MySQL5.6的Linux安装shell脚本之二进制安装(一)
    查看>>
    MySQL5.6的zip包安装教程
    查看>>
    mysql5.7 for windows_MySQL 5.7 for Windows 解压缩版配置安装
    查看>>
    Webpack 基本环境搭建
    查看>>
    mysql5.7 安装版 表不能输入汉字解决方案
    查看>>
    MySQL5.7.18主从复制搭建(一主一从)
    查看>>
    MySQL5.7.19-win64安装启动
    查看>>
    mysql5.7.19安装图解_mysql5.7.19 winx64解压缩版安装配置教程
    查看>>